LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS

THIRD SEMESTER - NOVEMBER 2022

17/18UMT3MC01 - INTEGRAL TRANSFORMS AND PARTIAL DIFF. EQUATIONS

Date: 24-11-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

Answer ALL questions

<u>PART – A</u>

(10 x 2 = 20 Marks)

Max.: 100 Marks

- 1. Define Laplace transform.
- 2. What is $L\{t^3\}$?
- 3. Find $L^{-1}\left\{\frac{1}{(s-3)^2}\right\}$.
- 4. Find $L^{-1}\left\{\frac{1}{(s^2+k^2)}\right\}$, where k is a constant.
- 5. Define Fourier transform.
- 6. Prove that $F{af(x) + bg(x)} = aF{f(x)} + bF{g(x)}$.
- 7. Define Fourier sine transform.
- 8. Prove that $F_c\{f(ax)\} = \frac{1}{a}F_c\left(\frac{s}{a}\right)$.
- 9. Eliminate the arbitrary constants and form a differential equation from z = ax + by.
- 10. Solve $\frac{\partial^2 z}{\partial y^2} = \sin y$.

<u> PART – B</u>

Answer any FIVE questions

 $(5 \times 8 = 40 \text{ Marks})$

11. Find (i) $L\{t \sin^2 t\}$ and (ii) $L\{t^2 \cos 4t\}$.

12. Find the Laplace transform of the rectangular wave given by $f(t) = \begin{cases} 1, & \text{for } 0 < t \le b \\ -1, & \text{for } b < t < 2b \end{cases}$

13. Evaluate $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+9)}\right\}$. 14. Find $L^{-1}\left\{\log\left(\frac{s+1}{s-1}\right)\right\}$. 15. Prove that $F\left\{\frac{d^n}{dx^n}(f(x))\right\} = (-is)^n F(s)$, provided $f(x), f'(x), f''(x), \dots, f^{(n-1)}x \to 0$ as $x \to \pm \infty$. 16. Prove that $F_c\left\{\frac{1}{\sqrt{x}}\right\} = F_s\left\{\frac{1}{\sqrt{x}}\right\} = \frac{1}{\sqrt{s}}$. 17. Solve $p^2 + q^2 = x^2 + y^2$. 18. Solve $\sqrt{p} + \sqrt{q} = 1$.

PART – C

Answer any TWO questions

19. (a). Using Laplace transform evaluate $\int_0^\infty t e^{-3t} \cos t \, dt$.

(b). Find $L^{-1}\left\{\frac{s+2}{(s^2+4s+5)^2}\right\}$.

20. Using Laplace transform solve the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$, given that $y = \frac{dy}{dt} = 0$ when t = 0. (20)

- 21. (a). State and prove the convolution theorem on Fourier transform.(b). State and prove the Parseval's identity.
- 22. (a). Find the complete solution of $p(1 + q^2) = q(z 1)$. (b). Solve (y - z)p + (z - x)q = x - y.

\$\$\$\$\$\$\$

 $(2 \times 20 = 40 \text{ Marks})$

(10+10)

(10+10)

(10+10)